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Understanding the pathophysiology of SARS-CoV-2 infec-
tion is critical for therapeutic and public health strategies. 
Viral–host interactions can guide discovery of disease regula-
tors, and protein structure function analysis points to several 
immune pathways, including complement and coagulation, as 
targets of coronaviruses. To determine whether conditions 
associated with dysregulated complement or coagulation sys-
tems impact disease, we performed a retrospective observa-
tional study and found that history of macular degeneration 
(a proxy for complement-activation disorders) and history of 
coagulation disorders (thrombocytopenia, thrombosis and 
hemorrhage) are risk factors for SARS-CoV-2-associated mor-
bidity and mortality—effects that are independent of age, sex 
or history of smoking. Transcriptional profiling of nasopha-
ryngeal swabs demonstrated that in addition to type-I inter-
feron and interleukin-6-dependent inflammatory responses, 
infection results in robust engagement of the complement and 
coagulation pathways. Finally, in a candidate-driven genetic 
association study of severe SARS-CoV-2 disease, we identi-
fied putative complement and coagulation-associated loci 
including missense, eQTL and sQTL variants of critical com-
plement and coagulation regulators. In addition to providing 
evidence that complement function modulates SARS-CoV-2 
infection outcome, the data point to putative transcriptional 
genetic markers of susceptibility. The results highlight the 
value of using a multimodal analytical approach to reveal 
determinants and predictors of immunity, susceptibility and 
clinical outcome associated with infection.

The SARS-CoV-2 pandemic has had profound economic, social 
and public health impact with over 11 million confirmed cases and 
over 530,000 deaths globally. Widely reported age-dependent mortal-
ity rates associated with infection appear to be driven by viral replica-
tion and comorbidities that influence immune-mediated pathology1,2. 
Understanding how molecular virus–host interactions manifest as 
risk factors can delineate regulatory programs that mediate immune 
pathology3, provide valuable clues about disease determinants, facili-
tate clinical management and help guide choice of therapeutic inter-
ventions and setting of appropriate social and public health measures. 
As part of a separate study, we mapped over 140 cellular proteins that 
are structurally mimicked by coronaviruses (CoVs) and identified 

complement and coagulation pathways as targets of this strategy 
across all CoV strains4. The complement system is a critical defense 
against pathogens, including viruses5 and when dysregulated (by 
germline variants or acquired through age-related effects or excessive 
tissue damage) can contribute to pathologies mediated by inflam-
mation5–7. Similarly, inflammation-induced coagulatory programs, 
which can themselves be regulated by the complement system, are 
pivotal in controlling pathogenesis associated with infections. So, 
virally encoded structural mimics of complement and coagulation 
factors may contribute to CoV-associated immune-mediated pathol-
ogy and indicate sensitivities in antiviral defenses. For example, 
dysfunctions associated with complement (for example, early-onset 
and age-related macular degeneration (AMD)6–10) and/or coagula-
tion (for example, thrombocytopenia, thrombosis and hemorrhage) 
may impact clinical outcome of SARS-CoV-2 infection. Guided by 
protein structure–function analysis and observations that CoV infec-
tions result in hypercoagulative phenotypes11,12, we set out to explore 
the role of complement or coagulatory function in SARS-CoV-2 
infection and clinical outcome. In a retrospective observational study 
of 11,116 patients who presented with suspected SARS-CoV-2 infec-
tion, we found that history of macular degeneration (a proxy for 
complement activation disorders) and history of coagulation disor-
ders (thrombocytopenia, thrombosis and hemorrhage) are risk fac-
tors for morbidity and mortality in SARS-CoV-2-infected patients, 
effects that could not be explained by age, sex or history of smok-
ing. Transcriptional profiling of nasopharyngeal swabs (NPs) from 
650 control and SARS-CoV-2-infected patients demonstrated that 
infection results in robust engagement and activation of comple-
ment and coagulation pathways. Finally, a candidate-driven genetic 
association study of severe SARS-CoV-2 disease identified missense, 
expression quantitative trait loci (eQTL) and splicing quantitative 
trait loci (sQTL) variants in critical regulators of complement and 
coagulation. In addition to providing evidence that these cascades 
modulate SARS-CoV-2 infection outcome, the data point to puta-
tive transcriptional and genetic markers of susceptibility. The results 
highlight the value of a multimodal analytical approach, combining 
molecular information from virus protein structure–function analy-
sis with clinical informatics, transcriptomics and genomics to reveal 
determinants and predictors of immunity, susceptibility and clinical 
outcome associated with infection.
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Fig. 1 | History of macular degeneration and coagulation disorders are associated with adverse outcomes after confirmed SARS-CoV-2 infection.  
a, Kaplan–Meier curves (line, proportion of subjects that did not require intubation; error band, 95% CI (Greenwood’s)) for ten binary conditions: age > 65 
years, male sex, macular degeneration (macula), complement deficiency disorders (CD), coagulation, hypertension, T2D, obesity, CAD and cough. The 
survival rates for the patients with the named condition are shown in orange (sample size is given as nE). The shaded region indicates the 95% CI. The 
blue survival line is for patients without the named condition (sample size is given as nT). Note that none of the four patients with CD required mechanical 
ventilation. b, Kaplan–Meier curves (line, proportion of subjects that survived; error band, 95% CI (Greenwood’s)) for the same ten conditions as in a. 
All four patients with CD survived (not statistically significant). c, Intubation rates across the binary conditions. Intubation was highest in patients with 
a history of macular degeneration (n = 14), followed by T2D (n = 111) and hypertension (n = 210). Error bars indicate binomial 95% CIs. d, Mortality rates 
across the binary conditions. Patients with a history of macular degeneration saw the highest mortality rates (n = 22), followed by age ≥ 65 (n = 513) and 
T2D (n = 191). Error bars indicate binomial 95% CI. e, HRs, estimated using a Cox proportional hazards model, for risk of intubation (as a validated proxy 
for requiring mechanical respiration). Sample sizes are the same as in a, and error bars represent 95% CI derived from the s.e.m. f, Similarly, HRs for 
mortality, estimated using a Cox proportional hazards model. HRs and statistical significances are shown in Table 1. Sample sizes are the same as in b, and 
error bars represent 95% CI derived from the s.e.m.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine
von mir
Hervorheben

von mir
Hervorheben

von mir
Hervorheben



Letters NATURE MEDICInE

Between 1 February 2020 and 25 April 2020, 11,116 patients 
presented to New York-Presbyterian/Columbia University Irving 
Medical Center with suspected SARS-CoV-2 infection, of which 
6,398 tested positive (Table 1). Electronic health records (EHRs) 
were used to define sex, age and smoking history status as well as 
histories of macular degeneration, coagulatory disorders (throm-
bocytopenia, thrombosis and hemorrhage), hypertension, type 2 
diabetes (T2D), coronary artery disease (CAD) and obesity (see 
Methods). We identified 88 patients with history of macular degen-
eration, 4 with complement deficiency disorders and 1,179 with 
coagulatory disorders (other comorbidity frequencies are shown in 
Table 1 and covariances between them are shown in Extended Data 
Fig. 1). We observed a 35% mortality rate among patients that were 
put on mechanical ventilation and that 31% of deceased patients 
had been on mechanical respiration.

We used survival analysis and Cox proportional hazards regres-
sion modeling to estimate univariate and age- and sex-corrected risk 
associated with clinical history of previously reported SARS-CoV-2 
risk factors as well as coagulation and complement disorders. We 

identified significant risk of mechanical respiration and mortal-
ity associated with age and sex, as well as history of hypertension, 
obesity, T2D and CAD (Fig. 1 and Table 1). Notably, we did not 
find evidence that smoking status (past or present) is a significant 
risk factor for either mechanical respiration or mortality. However, 
patients with AMD (a proxy for complement activation disorders) 
and coagulation disorders (thrombocytopenia, thrombosis and 
hemorrhage) were at significantly increased risk of adverse clinical 
outcomes (including mechanical respiration and death) following 
SARS-CoV-2 infection (Fig. 1 and Table 1). Moreover, as shown 
in Fig. 1b, patients with AMD succumb to disease more rapidly 
than others. Critically, the contribution of age and sex was not 
sufficient to explain the increased risks associated with history of 
macular degeneration or coagulation disorders (Fig. 1 and Table 1). 
Conversely, albeit in a small number of individuals, we observed 
that among patients with complement deficiency disorders, who 
are normally at increased risk of complications associated with 
infections, none required mechanical respiration or succumbed to 
their illness (Table 1 and Fig. 1a,b). Notably, while the correlation  
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Fig. 2 | SARS-CoV-2 infection engages robust transcriptional regulation of complement and coagulation cascades. a, GSEA of Hallmark gene sets was 
applied to RNA-seq profiles of NP swabs from 650 control and SARS-CoV-2-infected patients stratified by SARS-CoV-2 positive (green) or low (yellow), 
medium (orange), high (red) viral load (significantly enriched gene sets highlighted in blue). b, Leading edge enrichment plots from GSEA analysis 
of MsigDB-wide gene sets are shown for Hallmark_Complement and KEGG_Complement_and_Coagulation_Cascade gene sets with SARS-CoV-2 
stratification indicated by color. c, Hierarchical clustering of z score normalized mRNA profiles of complement and coagulation components that undergo 
significant (FDR corrected P < 0.01) transcriptional regulation in response to SARS-CoV-2 infection (cold and hot color scale reflects downregulated 
or upregulated expression, respectively). d–f, Violin plots indicating median and quartiles as well as minima and maxima bounds (TPM, transcripts 
per million, shown on y axis) of highlighted differentially regulated genes are shown for upregulated (d), downregulated (e) or particularly upregulated 
expression in the context of high viral load (f). Normalized enrichment scores (NES) and FDR-corrected P values are shown. Two-tailed Mann–Whitney 
U-test P values are reported.
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between AMD or coagulopathies and established covariates 
included in this study is low (Extended Data Fig. 1 and Extended 
Data 1), further study will be necessary to rule out comorbidities 
that may be associated with AMD and coagulopathies. Together, 
these data suggest that hyperactive complement and coagulative 
states predispose individuals to adverse outcomes associated with 
SARS-CoV-2 infection and that deficiencies in complement com-
ponents may be protective. However, given the low incidence rate of 
deficiencies in either complement or coagulation pathways, further 
analysis with larger clinical cohorts is warranted.

We leveraged whole-genome RNA sequencing (RNA-seq) pro-
files to identify differentially regulated genes and pathways in 650 
NP swabs from control and SARS-CoV-2-infected patients who 
presented to Weill-Cornell Medical Center. Gene set enrichment 
analysis (GSEA) of Hallmark gene sets found that SARS-CoV-2 
infection (as defined by presence of SARS-CoV-2 RNA and strati-
fied into ‘positive’, ‘low’, ‘medium’ or ‘high’ based on viral load; 
see Methods) induces genes related to pathways with known 
immune modulatory functions (Fig. 2a). Moreover, among the 
most enriched gene sets, SARS-CoV-2 infection induces robust 
activation of the complement cascade (false discovery rate (FDR) 
P < 0.001), with increasing enrichment and significance with 
viral load (FDR P < 0.0001). We extended the analysis to include 
all complement- and coagulation-associated gene sets in MsigDB 
and identified ‘KEGG_Complement_and_Coagulation_Cascades’, 
‘GO_Coagulation’ and ‘Reactome_initial_triggering_of_comple-
ment’ to be enriched in expression profiles of SARS-CoV-2-infected 
samples (Q < 0.05; representative GSEA profiles are shown in Fig. 2b  
and a full list of enriched pathways and gene sets can be found at 
https://covidgenes.weill.cornell.edu/). The pathway-level transcrip-
tional regulation induced by SARS-CoV-2 identified by GSEA is 
also observed at the individual gene level for upregulated and down-
regulated transcripts as well as those that are particularly upregu-
lated in the context of high viral load (Fig. 2c–f). Taken together, the 
data demonstrate that in addition to immune factors such as type 
I interferons and dysregulation of interleukin (IL)-6-dependent 
inflammatory responses, which have been linked to poor clinical 
outcome11, transcriptional control of complement and coagulation 
cascades is a feature of SARS-CoV-2 infection.

Dysfunction of complement or coagulation cascades can result 
from acquired dysregulation, genetically encoded variants or 
both. We conducted a candidate-driven study to evaluate whether 
genetic variation within a 60-Kb window around 102 genes with 
known roles in regulating complement or coagulation cascades 
(2,888 genetic variants fulfill this criteria of the 805,426 profiled 
in the UK Biobank) is associated with poor SARS-CoV-2 clinical  
outcome (results that follow are robust to varying window size 
between 40–80Kb, Extended Data Fig. 2 and Fig. 3a,b; Methods). 
Single-nucleotide polymorphisms (SNPs) with minor allele fre-
quency (MAF) below 1% were excluded and an empirical permutation  

analysis to set the study-wide significance alpha (α) thresholds for 
each analysis described below was used (Fig. 3 and Extended Data 
Figs. 2–7; Methods). The initial analysis, applied to the April 2020 
UK Biobank data release10,13 (excluding third-degree and above 
relatedness and without aneuploidy, resulted in 388 positive and 
332 positive and hospitalized patients) identified 11 loci represent-
ing seven genes with study-wide significance (α = 0.001; Fig. 3c and 
Extended Data Fig. 2). Among these, and proximal to coagulation 
factor III (F3), is variant rs72729504, which we find to be associ-
ated with increased risk of adverse clinical outcome associated with 
SARS-CoV-2 infection (odds ratio (OR) 1.93). Mutations in F3 
have the strongest association with fibrin fragment D-dimer levels, 
the most widely used clinical marker of activated blood coagula-
tion14. Importantly, increased D-dimer levels were recently reported 
to correlate with poor clinical outcome in SARS-CoV-2-infected 
patients11. Though lacking in power to determine statistical signifi-
cance, we find that rs12029080, the lead common variant identified 
to be associated with increased D-dimer levels, is also associated 
with increased COVID-19 severity (Extended Data Fig. 2). So, while 
effect sizes are modest and a functional role of rs72729504 remains 
to be elucidated, our observations suggest that this locus may repre-
sent a genetic marker of SARS-CoV-2 disease outcomes.

The analysis also identified that four variants previously reported 
to be associated with AMD (rs45574833, rs61821114, rs61821041 
and rs12064775)15 predispose carriers to hospitalization follow-
ing SARS-CoV-2 infection (OR, 2.13–2.65; Extended Data Fig. 2).  
A fifth variant, rs2230199, which maps to complement C3 (a gene 
shown to be linked to AMD in an independent genome-wide asso-
ciation study (GWAS)) has not been associated with increased 
AMD risk in the UK population. The three SNPs that map to C3 
(rs1047286, rs2230203 and rs2230199) each seem to confer some 
protection associated with SARS-CoV-2 infection (OR, 0.66–0.68). 
Two of the identified variants (rs61821114 and rs61821041) map 
to eQTLs associated with complement decay-accelerating factor 
(CD55)16. CD55 accelerates the decay of complement proteins, 
thereby disrupting the cascade and preventing immune-mediated 
damage5. These eQTLs result in decreased expression of CD55 
(Fig. 3d), thereby relieving the restraining function of this protein. 
In agreement, we observed that these variants are associated with 
increased risk of adverse clinical outcome following SARS-CoV-2 
infection (OR, 2.34–2.4).

Genetic association studies performed on relatively small 
cohorts can be prone to false positives. While we implemented 
permutation analyses to empirically determine statistical signifi-
cance thresholds (see Methods), we also repeated the analysis using 
updated UK Biobank data released in May 2020 (651 SARS-CoV-
2-positive and 500 positive and hospitalized patients). The analysis 
recapitulated 6 of the 11 findings from April 2020 and identified 16 
additional loci with study-wide significance (α = 0.0025, Extended 
Data Fig. 2 and Fig. 3c). The scan revealed five variants proximal 

Fig. 3 | Targeted genetic association study identifies SNPs in complement and coagulation pathway components associated with clinical outcome 
of SARS-CoV-2 infection. a,b, P values from a negative binomial distribution fit to permutation of SNPs sampled (left) and case–control phenotypes 
(center) generated under the null hypothesis are shown for the April 2020 (a) or May 2020 (b) cohort (α and distance pairs as indicated; for more 
information see Methods). Also shown are the number of hits that pass the corresponding α study-wide significance threshold by distance (right) for 
April 2020 (a) or May 2020 (b) cohorts. c, Manhattan plots of 2,888 variants within 60 kb of complement and coagulation pathway genes for analyses 
using the April 2020 cohort (top) and May 2020 cohort (bottom). Study-wide significance threshold shown as dashed green lines, nominal significance 
threshold is shown as black dashed line, and SNP colors alternate by chromosome. Significant SNPs are shown as colored markers and annotated with 
the nearest gene by base-pair distance. SNPs shown in green are study-wide significant in both April 2020 and May 2020. SNPs shown as diamonds are 
also study-wide significant in haplotype-based analysis (see Methods). Logistic regression was used to assess statistical significance; multiple hypothesis 
testing was controlled using an empirical permutation analysis to set a study-wide α. eQTLs are further highlighted in d and e. d, eQTL relationship for 
rs61821114 and CD55 in thyroid19. The T allele of rs61821114 is associated with significantly lower expression of CD55. e, eQTL relationship for rs669 and 
A2M19. The C allele of rs669 is associated with significantly lower expression of A2M in 17 tissues, including the esophageal mucosa (shown) and lung. Box 
plot inlays show median, 25th and 75th percentiles in each group. eQTL-associated P values were calculated as described previously and show minima and 
maxima bounds16.
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to α-2-macroglobulin (A2M), a regulator of fibrin clot formation 
and inflammatory cascades17. rs10842898, rs669 and rs4883215 are 
eQTLs associated with significant downregulation of A2M (and 
concomitant upregulation of A2M-AS1, the antisense RNA of A2M; 
data available on https://gtextportal.org) in multiple tissues, includ-
ing mucosa of the esophagus (P value = 1.9 × 10−15; Fig. 3e). In addi-
tion, rs10842898 and rs669 are sQTLs for mannose-6-phosphate 

receptor (M6PR) a P-type lectin that regulates lysosomal cargo 
loading and participates in cellular responses to wound healing, 
cell growth and viral infection18, suggesting that these SNPs may 
contribute to complex regulation of transcripts with immunological 
and antiviral roles.

Analysis of 936 SNPs in haplotype blocks (Extended Data Fig. 2; 
see Methods) resulted in 16 study-wide significant SNPs (α = 0.01, 
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Extended Data Fig. 8) using the April 2020 cohort, of which 8 
repeated at study-wide significance (α = 0.0075) using the May 2020 
dataset. These include rs45574833, a missense variant in C4BPA, 
which negatively regulates the classical complement pathway19. We 
also identified a link between rs731034 (an eQTL in collectin sub-
family member 11; COLEC11) and poor clinical outcome in both 
April 2020 (OR, 1.27) and May 2020 (OR, 1.33) cohorts. COLEC11 
binds carbohydrate antigens on microorganisms, including viruses, 
facilitating their recognition and removal. This eQTL results in sig-
nificant upregulation of COLEC11 across multiple tissues including 
lung (P value = 1 × 10−11) and suggests that sugar moieties on viral 
proteins may serve as antigenic targets of immunological responses 
to SARS-CoV-2 infection. Though experimental validation and 
functional interrogation is required to elucidate the precise patho-
physiology, taken together, the observations point to genetic varia-
tion in complement and coagulation components as contributing 
factors in SARS-CoV-2-mediated disease.

In summary, we present evidence that complement and coagula-
tory functions may play a role in SARS-CoV-2 infection outcome. We 
found that AMD and coagulatory dysfunctions predispose patients to 
poor clinical outcomes following SARS-CoV-2 infection and, though 
their low incidence rates invite further investigation, complement 
deficiencies appear to be protective. Nevertheless, in an orthogonal 
analysis of transcriptional responses to infection, we demonstrate that 
SARS-CoV-2 engages robust activation of complement and coagu-
lation cascades. Moreover, our candidate-driven analysis of genetic 
variation and severe SARS-CoV-2 disease yielded putative loci 
including missense, eQTL and sQTL variants of critical regulators of 
the complement and coagulation cascades. While the results appear 
to be, at least functionally, consistent with a recent GWAS that iden-
tified A/B blood types as risk factors for COVID-19 (ref. 20) (A and 
B blood groups have been associated with increased risk of coagu-
lopathies21–23), their interpretation must be performed with caution. 
However, pathology associated with dysregulation and genetic varia-
tion in complement and coagulation pathways is not without prec-
edent and has been associated with dengue virus infection, where it is 
correlated with disease severity and mirrors that of acute SARS-CoV-2 
disease24,25, suggesting that complement and coagulatory disfunctions 
may represent risk factors for a broad range of pathogens.

Site-specific clinical care decisions, ancestral homogeneity, pop-
ulation stratification and socioeconomic status of affected popu-
lations can all impact the findings, particularly when limited by 
sample size. Similarly, retrospective studies have notable limitations 
in data completeness, selection biases and methods of data capture. 
So, claims on causality cannot be made, nor can we definitively rule 
out other clinical factors as possible drivers of disease. Still, our find-
ings highlight the value of combining molecular information from 
virus protein structure–function analysis with orthogonal clinical 
data analysis to reveal determinants and predictors of immunity, 
susceptibility and clinical outcome associated with infection. Such 
frameworks can help refine and power large-scale genomics efforts 
based on informed biological and clinical conjectures. While identi-
fication of CoV-encoded structural mimics guided the clinical stud-
ies, a molecular link between those observations and the findings 
presented herein remains to be elucidated. Nevertheless, the obser-
vations advance our understanding of how SARS-CoV-2 infection 
leads to disease and can help explain variability in clinical outcomes. 
Among the implications, the data warrant heightened public health 
awareness for the most vulnerable individuals and further investiga-
tion into an existing menu of complement and coagulation targeting 
therapies that were recently shown to be beneficial in a small cohort 
of patients with SARS-CoV-2 infection26,27.
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Methods
Ethics and data governance approval. The study is approved by the Columbia 
University Irving Medical Center Institutional Review Board (IRB) no. AAAL0601 
and the requirement for informed consent was waived. A data request associated 
with this protocol was submitted to the Tri-Institutional Request Assessment 
Committee of New York-Presbyterian/Columbia and Cornell and approved.  
The research on the UK Biobank data was conducted using the UK Biobank 
Resource under application no. 41039. The transcriptomics analysis samples 
were collected and processed through the Weill Cornell Medicine IRB protocol 
19-11021069.

Retrospective clinical study. Cohort and study description. In this observational 
cohort study, we used a data warehouse derived from EHRs from 11,116 patients 
treated at New York-Presbyterian/Columbia University Irving Medical Center 
for suspected cases of SARS-CoV-2 infection. For these patients we collected 
contemporary data from their current encounter (the encounter associated  
with their suspected SARS-CoV-2 infection) as well as historical data, if available, 
from their previous encounters. Contemporary data (collected between 1 February 
2020 and 12 April 2020) included insurance billing information, laboratory 
measurements, procedures and SARS-CoV-2 diagnostic test results. These data  
were derived from the data warehouse tables in Epic. Overall, 6,927 patients  
have historical data (data collected before 24 September 2019) available from  
an Observational Medical Outcomes Partnership (OMOP) v.5 instance stored  
using MySQL, which included all of the standard tables for recording condition, 
procedure, medication and measurement data (among others). Of these, we used 
insurance billing information from the condition occurrence table and demographics 
from the person table. See Preparation of data for modeling for further details on 
data preparation.

We used contemporary data to define inclusion criteria and outcomes 
(requiring mechanical respiration and mortality) and used historical data  
to define patient comorbidities. We defined three hypothesized comorbidity 
covariates: macular degeneration, CD disorders and disorders of coagulation.  
We used historical data to define comorbidities, age and sex. We did not include 
race and ethnicity data in the modeling as we have previously found issues  
with data quality28. The race/ethnicity data that we had is included in the  
tables for reference. We also modeled other comorbidities previously associated  
with morbidity and mortality (Zhou et al.11 and others), including history  
of cardiovascular disease, hypertension, obesity, and diabetes (Table 1 and 
Extended Data Fig. 1), all derived from the historical data. Coded covariate 
definitions, as well as lists of which diagnosis codes are most common in each 
group, are available in the Extended Data and methods. We used established 
institutional procedures and an institutional clinical data warehouse to extract all 
data from the EHRs.

Defining patient outcomes. Outcome definitions were defined by data derived 
from the EHRs between 1 February 2020 and 12 April 2020. Mortality is derived 
from a death note filed by a resident or primary provider that records the date 
and time of death. Intubation was used as an intermediary end point and is a 
proxy for a patient requiring mechanical respiration. We used note types that were 
developed for patients with SARS-CoV-2 infection to record that this procedure 
was completed. We validated outcome data derived from notes against the patient’s 
medical record using manual review.

Preparation of data for modeling. We used MySQL and Python libraries (pymysql, 
pandas) to extract and prepare data for modeling. The code for data preparation 
is available in GitHub (https://github.com/tatonetti-lab/complementcovid) as 
a Jupyter Notebook entitled Data Setup. We began by creating a master list of 
patients with suspected CoV. These were patients that were either diagnosed with 
the disease, as indicated by an ICD10 code for SARS-CoV-2 infection, in their 
billing data or a patient that was tested for the presence of the virus using RT–PCR 
as indicated by a laboratory order for the test. We found 2,821 using the former 
method and 11,116 patients using the latter. We then extracted birth dates, death 
dates (if the patient had died or a null value otherwise) and sex codes (1 for female, 
2 for male). Patients who had sex codes for nonbinary genders were excluded  
from our analysis. We then defined a ‘first diagnosis date’ for each patient as  
either their first diagnosis date (by billing code) or the first date that they tested 
positive for SARS-CoV-2, whichever came first. Next, we calculated each patient’s 
age at the time of the ‘first diagnosis date.’ Each of the outcomes and covariates 
were extracted from their respective tables as detailed in GitHub. Whenever 
possible, we used the highest-level ancestor code (from the structured vocabulary 
in OMOP) that represented the concept we wanted to model. We then used  
the concept ancestor tables to grab all the descendant codes. Note that diabetic 
kidney disease was considered for inclusion and so is represented in the data 
preparation script; however, it was never modeled. Cough is included as a covariate 
as a reference symptom for comparison. The last step in the preparation process 
was to compute the censor dates. To do so, we iterated through each patient in 
our master list and computed their time (in days) to intubation (if they required 
mechanical respiration) or death (if they died). If not, then the study end date 

(25 April 2020) was used as the patient’s censored time (in days). Finally, for any 
patients that were not positive for SARS-CoV-2, their time-to-event values were 
set to a null indicator to be dropped from the dataset later. Finally, the data were 
all combined in a pandas (v.1.0.3) dataframe and saved to disk as a pickle file for 
efficient loading.

Statistical model. Our patient timelines may be censored as our study 
cohort included patients that were being treated at the time of analysis. We 
performed survival analysis on the intubation orders and death using a Cox 
proportional-hazards model and visualized the risk using Kaplan–Meier curves 
using the lifelines Python package (v.0.24.4). Error estimates on the Kaplan–
Meier curves were estimated using Greenwood’s exponential formula29. We fitted 
both univariate models and model fit on the covariate, age and sex and used 
log-likelihood to assess significance. We reported Cox proportional hazards 
coefficients and their 95% confidence intervals (Table 1). We modeled whether  
or not a patient had macular degeneration, a complement deficiency disorder  
or a coagulation disorder as binary variables (1 = yes, 0 = no). Code definitions  
are provided in Extended Data Fig. 1. We also included other significant 
comorbidities suggested by previous studies, CAD, hypertension, T2D, obesity 
or smoking status as binary variables (1 = yes, 0 = no), sex as a binary variable 
(0 = female, 1 = male), age as a quantitative variable, older age over 65 years (note 
that age over 65 was used only for illustrative purposes and was not used in 
multivariate modeling; in the multivariate model, age as a quantitative variable  
was used) and outcome as a binary variable (1 = yes, 0 = no). The outcome of 
interest was coded as 0 until the day it occurred (the date of the first intubation 
order following admission or the death date) or the date of analysis, whichever 
occurred first. Survival curves were generated for the indicated variables by  
setting all other variables to their respected averages within the training data. 
Note that we dropped patients who experienced the outcome before their initial 
diagnosis. This was either due to patients being hospitalized before infection  
(in the case of intubation) or errors in the coded data. We dropped 121 patients  
for intubation before infection and 12 patients for death. We also restricted the 
study to 90 d from the start date. One patient was removed for having an event 
outside of this range.

Covariate correlations. Using the data prepared as discussed above, we computed 
pairwise statistical correlations between age and sex as well as history of macular 
degeneration, CD disorders, coagulation disorders, hypertension, T2D, obesity 
and CAD. We computed them using data from all suspected patients (tested 
both positive and negative) as well as only those patients who tested positive. We 
used Spearman’s rho and the Tanimoto coefficients (1 − Jaccard distance) as our 
measures of correlation. For the comparison using the Tanimoto coefficient we 
binarized age as greater than or equal to 65 years.

Statistical software. We used Jupyter Notebooks (jupyter-client v.5.3.4 and 
jupyter-core v.4.6.1) running Python 3.7 and all fitted models using the Python 
lifelines package (v.0.24.4).

Transcriptomic analysis of NP swabs. Sample collection and processing. Patient 
specimens were collected with patients’ consent at New York Presbyterian Hospital 
and then processed for RT–PCR as described previously30. NP swab specimens 
were collected using the BD Universal Viral Transport Media system (Becton, 
Dickinson and Company) from symptomatic patients.

Extraction of viral RNA and RT–PCR detection. Total viral RNA was extracted from 
deactivated samples using automated nucleic acid extraction on the QIAsymphony 
and the DSP Virus/Pathogen Mini kit (Qiagen). One-step reverse transcription 
to complementary DNA and real-time PCR amplification of viral targets, E 
(envelope) and S (spike) genes and internal control, was performed using the 
Rotor-Gene Q thermocycler (Qiagen).

Human transcriptome analysis. RNA-seq reads that mapped unambiguously to 
the human reference genome via Kraken2 were used to detect transcriptional 
responses to SARS-CoV-2 infection as described previously30. Briefly, reads 
were trimmed with TrimGalore, aligned with STAR (v.2.6.1d) to the human 
reference build GRCh38 and the GENCODE v.33 transcriptome reference and 
gene expression was quantified using featureCounts, stringTie and salmon 
using the nf-core RNA-seq pipeline. Sample quality control was reported using 
fastqc, RSeQC, qualimap, dupradar, Preseq and MultiQC. Reads, as reported by 
featureCounts, were normalized using variance-stabilizing transform (vst) in 
DESeq2 package in R and DESeq2 was used to call differential expression with 
either positive cases versus negative, or viral load (high/medium/low/none) as 
reported by RT–PCR cycle threshold (Ct) values. TPMs were used to rank genes 
and perform GSEA as described previously31,32.

Reverse transcriptase, quantitative real-time PCR. The presence of SARS-CoV-2  
in clinical samples was determined by RT–PCR. Briefly, primers for the E 
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(envelope) gene (which detects all members of the lineage B of β-CoVs) and  
the S (spike) gene (which specifically detect SARS-CoV-2). Samples were 
annotated using RT–PCR Ct value for SARS-CoV-2 primers as follows: Ct ≤ 18 
were assigned as ‘high viral load’; Ct of 18–24 were assigned as ‘medium viral 
load’; and Ct of 24–40 were assigned as ‘low viral load’ stratifications; Ct > 40 was 
classified as negative (−).

Genetic analysis of UK Biobank. Data source. UK Biobank subjects that were 
of White British descent, in the UK Biobank principal component analysis 
calculations and therefore without third degree and above relatedness and without 
aneuploidy, were used in this study, totaling 337,147 subjects (181,032 females  
and 156,115 males)10. Of the nearly 500,000 participants, approximately 50,000 
subjects were genotyped on the UK BiLEVE Array by Affymetrix, whereas the  
rest were genotyped using the Applied Biosystems UK Biobank Axiom Array,  
with over 800,000 markers using build GRCh37 (hg19). The arrays share 95% 
marker coverage. We extracted markers with a MAF > 0.005, INFO score > 0.3  
and Hardy–Weinberg equilibrium test mid-P value >10-10 using PLINK2 (ref. 33).  
UK Biobank v.3 imputation combined the Haplotype Research Consortium 
with the UK10K haplotype resource using the software IMPUTE4 (UK Biobank 
white paper). Association analyses were performed using a logistic regression 
model with additive gene dosage and covariates including age at 2018, sex, first 
ten principal components (provided by the UK Biobank) and the genotyping 
array that the sample was carried out on. We determined the α threshold for 
study-wide significance using an empirical permutation analysis (see previously). 
We performed a study-wide association analysis comparing variants for subjects 
that were SARS-CoV-2 positive and required hospitalization against the entire 
population of 337,147 subjects

Targeted gene set definition. The union of coagulation- and complement-related 
gene sets (with immunoglobulin genes removed) that are part of MsigDB was 
used to define the set of 102 genes used in this study. For each gene, we used the 
transcriptional start and stop site from the hg19 build of the human genome to 
define a catchment window of 80 kbp. From the 805,426 variants profiled in the 
UK Biobank genotyping data after quality control and quality control filters using 
PLINK2 (see above), 3,540 variants within the transcribed region of the genes of 
interest or within 80 kbp flanking the transcribed region, 2,888 are within 60 kbp, 
2,292 are within 40 kbp and 936 are located in haplotype blocks with study genes.

Empirical permutation evaluation to set study-wide α thresholds. We used 
permutation to estimate null distributions of the number of hits expected at nine 
α thresholds varying from (5 × 10−5 to 0.05) and by varying the distance threshold 
from 40 kb to 80 kb. As shown previously, 80% of GWAS hits are within 60 kb 
of the nearest gene34. Further, as shown in Extended Data Fig. 9, we empirically 
determined that the majority of eQTLs (>70%) are within 60 kb of gene bodies. We 
performed two sets of permutation analyses: (1) permuted the initial set of genes 
on which the included variant loci were chosen and (2) permuted the case–control 
labels. We repeated each 100 times and used the resulting data to fit a negative 
binomial distribution as our estimate of the null hypothesis. Additionally, we 
evaluated each of the sampled SNP variant sets from (1) and compared their MAF 
distribution with the MAF distribution of the complement and coagulation set. 
We removed any sets that were significantly different (nominal p < 0.05) according 
to a Mann–Whitney U-test (52 of 100 sets were removed due to this criterion; see 
Extended Data Fig. 10). We found that the negative binomial fitted the data the 
best according to a goodness of fit test (Extended Data Figs. 2–7). We used this 
distribution to assess statistical significance for each combination of α and distance 
values. The result is two estimates of the significance for each α, distance (d) pair, 
P(1)

α,d and P(2)
α,d, from permutation analyses (1) and (2) above, respectively. For 

example:

XðiÞ
α;d  NB r; pð Þ

PðiÞα;d ¼ 1� CDFNBðr;pÞ kα;d
� �

where X(i)
α,d is the number of permutation loci with a P value under the  

threshold, α. The parameters r and p of the negative binomial represent the 
number of successes/failures and the probability of success, respectively. Both r and 
p are fitted using nonlinear least squares (the curve_fit function in scipy.optimize) 
on X(i)

α,d, the count data from the permutation analyses for the given α and d.  
The P value is then calculated using the cumulative distribution function(CDF)  
of the fitted negative binomial distribution.

For the gene set permutation analysis (indicated by (2) above) we evaluated 
each of the 100 replicates to confirm that the MAF distribution was statistically 
indistinguishable from that of the complement and coagulation gene set variants. 
We did so by performing a Mann–Whitney U-test between the two distributions 
and excluded any replicates that showed a significant difference (nominal P < 0.05). 
Overall, 52 replicates were excluded because of this requirement. This MAF 
distribution analysis is not necessary for the case–control permutation analysis 
(shown in (2) above) as the loci are the same in each replicate and it is the  
case–control labels that are permuted.

Finally, to set the study-wide α for each study we chose the greatest threshold 
value that gave a P value of 0.05 or less for both permutation analysis methods:

max α s:t: PðiÞα;d<0:05 and PðiiÞ
α;d<0:05:

Finally, this entire process was repeated for two cohorts of patients, (a) the 
initial COVID cohort released by the UK Biobank in April 2020 and (b) the 
updated COVID cohort released in May 2020. The chosen α for April was 0.001 
and the chosen α for May was 0.0025. A data file of all of the distribution fit 
results and their resulting chi-squared goodness-of-fit statistics is available in the 
Extended Data materials.

We also performed the permutation significance estimation for the haplotype- 
derived SNP sets, although the distances for all loci chosen using that method are 
below the minimum in this analysis of 40 kb so those results are constant with regard 
to distance (Supplementary Fig. 3a,b). The chosen α for the linkage disequilibrium 
(LD)-derived SNP sets is 0.01 and 0.0075 for April and May, respectively.

Haplotype block-based selection of SNPs. We identified haplotype blocks based on 
linkage disequilibrium within the UK Biobank data genotype data of the 337,147 
subjects using PLINK1.9, where the lower 90% confidence interval is greater than 
0.70 and the upper 90% confidence interval is at least 0.98. We identified blocks of 
interests and subsequently the variants within those blocks, as those that contain 
any part of the genes of interest as denoted by the transcriptional start and end 
sites from the hg19 build of the human genome. From the 805,426 variant profiles 
in the UK Biobank genotype data, we identified 7,281 variants within the genes 
of interest. After applying additional quality control filters using PLINK2, 936 
variants remained for analysis.

Software. We used PLINK v.2.00a2LM 64-bit Intel (26 August 2019) to run the 
genetic association analysis. We used PLINK v.1.90b6.10 64-bit (17 June 2019) 
to identify haplotype blocks based on linkage disequilibrium. We used Jupyter 
Notebooks (jupyter-client v.5.3.4 and jupyter-core v.4.6.1) running Python 3.7, 
numpy 1.18.1 and scipy 1.4.1 for the permutation analyses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Processed count matrices with de-identified RNA-seq data and a full panel of 
GSEA results are available at https://covidgenes.weill.cornell.edu/. Viewing and 
exploration is publicly accessible. Requests for additional materials can be made via 
email to the corresponding authors.

Code availability
All scripts used for data preparation and analysis are available from GitHub 
as a Jupyter Notebook entitled Data Setup (https://github.com/tatonetti-lab/
complementcovid). Details on code execution is also provided.
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Extended Data Fig. 1 | Covariate correlations in EHR clinical data. a, Spearman correlation between modeled covariates in patients were diagnosed or 
tested positive for SARS-CoV-2: age, sex, macular degeneration (macula), complement deficiency disorders (CD), coagulation disorders (coagulation), 
hypertension, Type 2 Diabetes, obesity, and coronary artery disease (CAD). b, Spearman correlations, as in (a), for all patients (includes patients who 
tested negative for SARS-CoV-2). c, Tanimoto coefficients as in (a), for patients who tested positive for SARS-CoV-2 infection. Age was binarized as  
‘Age over 65’ to compute the score. d, Tanimoto coefficients as in (c) for all patients.
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Extended Data Fig. 2 | Results of permutation testing and fits to negative binomial distributions for April-2020 phenotype permutations. Histograms 
indicate the number of permutations with X significant hits (black/grey bars). Negative binomial fits are shown in red (see Methods). Chi-squared 
goodness-of-fit tests were performed for each distribution. Distributions which passed the goodness-of-fit test (p > 0.05) are shown in black and those that 
failed (p ≤ 0.05) are shown in grey. Results are visualized for 5 distances (columns) and 9 alpha thresholds (rows). All fits are available as supplement data.
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Extended Data Fig. 3 | Results of permutation testing and fits to negative binomial distributions for April-2020 SNP permutations. Histograms indicate 
the number of permutations with X significant hits (black/grey bars). Negative binomial fits are shown in red (see Methods). Chi-squared goodness-of-fit 
tests were performed for each distribution. Distributions which passed the goodness-of-fit test (p > 0.05) are shown in black and those that failed 
(p ≤ 0.05) are shown in grey. Results are visualized for 5 distances (columns) and 9 alpha thresholds (rows). All fits are available as supplement data.
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Extended Data Fig. 4 | Results of permutation testing and fits to negative binomial distributions for May-2020 phenotype permutations. Histograms 
indicate the number of permutations with X significant hits (black/grey bars). Negative binomial fits are shown in red (see Methods). Chi-squared 
goodness-of-fit tests were performed for each distribution. Distributions which passed the goodness-of-fit test (p > 0.05) are shown in black and those that 
failed (p ≤ 0.05) are shown in grey. Results are visualized for 5 distances (columns) and 9 alpha thresholds (rows). All fits are available as supplement data.
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Extended Data Fig. 5 | Results of permutation testing and fits to negative binomial distributions for May-2020 SNP permutations. Histograms indicate 
the number of permutations with X significant hits (black/grey bars). Negative binomial fits are shown in red (see Methods). Chi-squared goodness-of-fit 
tests were performed for each distribution. Distributions which passed the goodness-of-fit test (p > 0.05) are shown in black and those that failed 
(p ≤ 0.05) are shown in grey. Results are visualized for 5 distances (columns) and 9 alpha thresholds (rows). All fits are available as supplement data.
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Extended Data Fig. 6 | Results of permutation testing and fits to negative binomial distributions for Haplotype SNPs-only April-2020 phenotype 
permutations. Histograms indicate the number of permutations with X significant hits (black/grey bars). Negative binomial fits are shown in red (see 
Methods). Chi-squared goodness-of-fit tests were performed for each distribution. Distributions which passed the goodness-of-fit test (p > 0.05) are 
shown in black and those that failed (p ≤ 0.05) are shown in grey. Results are visualized for 5 distances (columns) and 9 alpha thresholds (rows). All fits 
are available as supplement data.
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Extended Data Fig. 7 | Results of permutation testing and fits to negative binomial distributions for Haplotype SNPs-only May-2020 phenotype 
permutations. Histograms indicate the number of permutations with X significant hits (black/grey bars). Negative binomial fits are shown in red (see 
Methods). Chi-squared goodness-of-fit tests were performed for each distribution. Distributions which passed the goodness-of-fit test (p > 0.05) are 
shown in black and those that failed (p ≤ 0.05) are shown in grey. Results are visualized for 5 distances (columns) and 9 alpha thresholds (rows). All fits 
are available as supplement data.
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Extended Data Fig. 8 | Pvalues from a Negative Binomial distribution fit to permutation of case:control phenotypes. Generated under the null hypothesis 
are shown for the Haplotype SNPs-only analyses using the April-2020 (a) or May-2020 (b) cohort. α and distance pairs as indicated; for more information 
see Methods.
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Extended Data Fig. 9 | Percent of significant eQTLs within a given distance of the gene body. Significant eQTLs were downloaded from the GTEx Portal 
website for Esophagus, Lung, and Heart tissues (9 tissues total) and used the provided significance thresholds to determine significance. Shown is the 
percent of significant eQTLs that are within X base pairs of their target gene aggregated over 9 tissues. Over 70% of significant eQTLs are within 60 Kb of 
their target gene. Black dashed line represents 60 Kb, grey lines represent 40 and 80 Kb.
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Extended Data Fig. 10 | Comparison of MAF distributions across sampled SNP sets. The medians, means, interquartile range, 95% confidence interval, 
minimum, and maximum are shown for each of the 100 samples of SNP sets (see Empirical Permutation Evaluation to set Study-wide Alpha Thresholds for 
details). Also shown are the same distribution statistics for the SNP set within 60Kb of complement and coagulation gene bodies (red). Each of the 100 
sampled SNP sets MAF distributions were compared to the study SNP set and tested for differences using a two-sample Mann-Whitney U test. Those that 
were not significantly different (p > 0.05) are shown in black. Those that are significantly different (p ≤ 0.05) are shown in grey and were dropped from the 
analysis.
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available through UKBiobank; h�ps://www.ukbiobank.ac.uk/)
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size sample size was determined based on availability of retrospective data.

Data exclusions inclusion and exclusion criteria are described in the methods

Replication Given that the study includes clinical data, replication was not easily possible.

Randomization NA

Blinding Researchers were only blinded to the identity of identifying patient information as required by law.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics information is provided in Table 1

Recruitment no recruitment was needed for retrospective component of the study. UKBB provides detailed information on recruitment. 
Recruitment of subjects related to figure 2 is described in a bioRxiv preprint (https://www.biorxiv.org/
content/10.1101/2020.04.20.048066v4)

Ethics oversight The study is approved by the Columbia University Irving Medical Center Institutional Review Board (IRB# AAAL0601) and the 
requirement for an informed consent was waived. A data request associated with this protocol was submitted to the Tri-
Institutional Request Assessment Committee (TRAC) of New-York Presbyterian, Columbia, and Cornell and approved. The 
research on the UK Biobank data has been conducted using the UK Biobank Resource under Application Number 41039. The 
transcriptomics analysis samples were collected and processed through the Weill Cornell Medicine Institutional Review Board 
(IRB) Protocol 19-11021069. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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