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The rapid growth rate of COVID-19 continues to threaten to
overwhelm healthcare systems in multiple countries. In response,
severely affected countries have had to impose a range of public
health strategies achieved via nonpharmaceutical interventions.
Broadly, these strategies have fallen into two categories: 1) “mit-
igation,” which aims to achieve herd immunity by allowing the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
virus to spread through the population while mitigating dis-
ease burden, and 2) “suppression,” aiming to drastically reduce
SARS-CoV-2 transmission rates and halt endogenous transmission
in the target population. Using an age-structured transmission
model, parameterized to simulate SARS-CoV-2 transmission in
the United Kingdom, we assessed the long-term prospects of
success using both of these approaches. We simulated a range
of different nonpharmaceutical intervention scenarios incorpo-
rating social distancing applied to differing age groups. Our
modeling confirmed that suppression of SARS-CoV-2 transmis-
sion is possible with plausible levels of social distancing over a
period of months, consistent with observed trends. Notably, our
modeling did not support achieving herd immunity as a practi-
cal objective, requiring an unlikely balancing of multiple poorly
defined forces. Specifically, we found that 1) social distancing
must initially reduce the transmission rate to within a narrow
range, 2) to compensate for susceptible depletion, the extent
of social distancing must be adaptive over time in a precise
yet unfeasible way, and 3) social distancing must be maintained
for an extended period to ensure the healthcare system is not
overwhelmed.
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Caused by a novel coronavirus, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) (1), COVID-19 is

an infectious disease capable of severe respiratory illness and
death (2). Since its identification in Wuhan, China, COVID-19
has become an on-going and rapidly expanding global pan-
demic that is causing substantial mortality and healthcare sys-
tem strain in multiple countries (3). While older individuals
and those with underlying conditions are most at risk (4),
infection has been seen across age groups (5, 6). Worryingly,
detection of viral loads in the upper respiratory tract suggests
potential for presymptomatic and ogliosymptomatic transmis-
sion (7–9). Due to the absence of a vaccine, current attempts
at controlling SARS-CoV-2 spread are focused on social mea-
sures that reduce rates of viral transmission: social distanc-
ing (a generalized reduction of contact rates between indi-
viduals in the population) and self-isolation by symptomatic
individuals (10).

Broadly speaking, two distinct approaches to controlling the
spread of SARS-CoV-2 have received much attention. The first
aims to suppress transmission in the target population (referred
to hereafter as “suppression”) (10). Under this objective, con-
trol measures reduce viral transmission to such a degree that
sustained endogenous transmission is no longer possible. By
maintaining control measures in place for a sufficient period of
time, the virus will be eliminated in the focal population. The

focus will then shift to preventing subsequent reintroduction to
prevent resurgence. The second approach aims to manage or
mitigate the negative health impacts (referred to hereafter as
“mitigation”) (10). While suppression aims to ultimately halt
local transmission, mitigation aims to reduce the growth rate
of the epidemic to ensure disease burden does not overwhelm
healthcare systems (3). By reducing (rather than halting) trans-
mission, this strategy allows the susceptible pool to diminish,
with the population potentially able to achieve herd immunity
(whereby sustained local transmission is impossible, even with-
out social distancing) (11). In practice, both approaches require
the rollout of the same types of control measures (social dis-
tancing and self-isolation), although the necessary intensities and
durations vary.

At the time of writing, trends in incidence data suggest mul-
tiple countries, including China, South Korea, Spain, and Italy,
have successfully implemented suppression strategies (12). Swe-
den is the poster child for mitigation strategies, and appears
to be aiming for herd immunity (13). Meanwhile, other coun-
tries continue to experience sustained transmission, and strate-
gic intention is less clear [including the United States (14)
and United Kingdom (15)]. The severe economic costs and
acute societal pressures associated with social distancing mea-
sures have led to a push for their relaxation (10). Given
the potentially long wait until a vaccine is available, the
UK government appears to have considered following Swe-
den’s example and attempt to achieve herd immunity in the
country (16).
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Confronted with escalating COVID-19 outbreaks, countries at
the leading edge of the pandemic have had to resort to impos-
ing drastic social distancing measures which have serious
societal and economic repercussions. Establishing herd immu-
nity in a population by allowing the epidemic to spread, while
mitigating the negative health impacts of COVID-19, presents
a tantalizing resolution to the crisis. Our study simulating
SARS-CoV-2 spread in the United Kingdom finds that achiev-
ing herd immunity without overwhelming hospital capacity
leaves little room for error. Intervention levels must be care-
fully manipulated in an adaptive manner for an extended
period, despite acute sensitivity to poorly quantified epidemi-
ological factors. Such fine-tuning of social distancing renders
this strategy impractical.
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The consequences of failure to either adequately mitigate
or suppress COVID-19 are potentially catastrophic. Due to
the many uncertainties surrounding SARS-CoV-2 transmission,
evolution, and immunity, public health decision makers are pre-
sented with an unenviable task. To help inform control policies
under uncertainty, mathematical modeling can assist in evalu-
ating the viability of mitigation and suppression as objectives
(17), by simulating the impacts of control strategies on viral
transmission, hospital burden, fatalities, and population-level
immunity.

Recent studies have modeled impacts of both mitigation and
suppression strategies, including for China (18), low-income
countries (19), and the United Kingdom (20, 21). Crucially, we
are not aware of any systematic studies that focus on 1) walking
the tightrope of achieving herd immunity without overburden-
ing healthcare systems and 2) the control effort (e.g., reduction
in contacts) required for successful mitigation relative to sup-
pression. These two knowledge gaps motivate our study. We use
an age-stratified disease transmission model, taking the United
Kingdom as an example, to simulate SARS-CoV-2 spread con-
trolled by individual self-isolation and widespread social distanc-
ing. We simulated various levels of self-isolation effectiveness
and three distinct types of social-distancing measures: 1) school
(including university) closures, 2) work and social place closures,
and 3) effective isolation by older individuals.

Our modeling confirms that suppression is possible with plau-
sible levels of social distancing and self-isolation, consistent
with experience in multiple countries. Our research does not,
however, support attempting to mitigate COVID-19 with the
aim of building herd immunity. Achieving herd immunity while
simultaneously maintaining hospital burden at manageable lev-
els requires adaptive fine-tuning of mitigation efforts, in the
face of imperfect epidemiological intelligence—something that
is impractical.

Results
In the absence of any intervention measures, our modeling
suggests SARS-CoV-2 will spread rapidly through the United

Kingdom (Fig. 1A), and ultimately infect approximately 77% of
the population (Fig. 1B). Using data on the age-specific fatality
rate of COVID-19 (22), our results show around 350,000 fatal-
ities among individuals aged over 60 y, and around 60,000 aged
below 60 y (Fig. 1C). While we caution that our model makes a
number of simplifying assumptions [e.g., no spatial dependence
in transmission (11)], the total of fatalities is comparable to pre-
dictions made in other UK modeling studies (e.g., within the 95%
prediction interval of ref. 20).

Sustained social distancing by older individuals (assumed to
result in a 90% reduction in contacts with individuals under 25 y
old, a 70% reduction with 25- to 59-y-olds, and a 50% reduction
between one another), and moderately effective self-isolation
by symptomatic individuals (at 20% efficacy) results in a shal-
lower epidemic curve (Fig. 1D) and a much smaller outbreak size
among individuals aged 60+ y (Fig. 1E). The attendant mortality
burden among 60+-y-old individuals is also substantially reduced
(to 62,000), with a smaller reduction in fatalities in those aged
< 60 y (to 43,000; Fig. 1F).

The addition of school (and university) closures, correspond-
ing to a 70% reduction in contacts among school-aged individ-
uals and a 20% reduction with 25- to 59-y-olds, dramatically
reduces the rate of epidemic growth (Fig. 1G), although such
levels of control are insufficient to suppress the epidemic (i.e.,
the number of daily cases still rises after implementation). The
premature reopening of schools after 100 d (while the virus is
still circulating) triggers a second wave of infection, with only a
moderately reduced peak in daily new cases, largely eroding any
additional gains made (23). The final proportion of the popu-
lation exposed (Fig. 1H) and the number of fatalities (Fig. 1I)
are largely unaltered compared to if schools had not been closed
(compare Fig. 1 E and F).

Our modeling indicates that, if sustained, such control mea-
sures can lead to the suppression of COVID-19 in the United
Kingdom by reducing R0 to <1 (Fig. 2 A and B). The effective-
ness of self-isolation by symptomatic individuals (i.e., its impact
on reducing overall transmission) is a product of two factors.
Firstly, the proportion of infections generated while the primary
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Fig. 1. Simulated examples of SARS-CoV-2 spread in the United Kingdom using an age-structured Susceptible Exposed Infectious Recovered (SEIR) model
under different control scenarios. (A) Daily new cases assuming no intervention measures enacted. (B) Cumulative proportion of the population exposed
to SARS-CoV-2 over the course of the epidemic. (C) Cumulative fatalities assuming fixed age-specific case fatality rates (see Materials and Methods). (D–F)
Same as A–C, but assuming that specific control measures are introduced when daily cases reached 10,000 (day 57): Older individuals social distance, and
symptomatic individuals self-isolate (at 20% effectiveness). (G–I) Same as D–F but, in addition, schools close on day 57. Reopening of schools after 100 d
results in a resurgence.
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Fig. 2. Prospects for disease suppression. Simulations of the age-structured
SEIR model performed assuming control measures are initiated when there
is a total of 10,000 infectious individuals in the population. The different
control measures and strengths are listed in Materials and Methods. (A)
Whether suppression is possible depends on both the self-isolation obser-
vance rate and the proportion of infections due to symptomatic individuals.
More extensive social distancing measures increase the ranges of these two
parameters for which suppression is possible. (B) Increases in self-isolation
effectiveness drive down the reproductive number, which also depends on
the social distancing measures employed. (C) The time taken for COVID-19
to be suppressed (modeled as a 100-fold reduction in infectious individuals)
depends on the amount the reproductive number is decreased below one.

case is exhibiting symptoms (including mild symptoms) and,
secondly, the engagement of symptomatic individuals with self-
isolation policies (see Materials and Methods). As both of
these parameters decrease, the self-isolation efficacy drops, and
greater social distancing measures are necessary to achieve sup-
pression (Fig. 2A). At present, there is a large uncertainty in
the relationship between symptoms and viral shedding (9). For
the social distancing strengths considered, suppression is possi-
ble if over 14% of infections are caused while the primary case
is exhibiting symptoms (ps). The associated self-isolation obser-
vance necessary to achieve suppression is inversely proportional
to ps , decreasing from 100% if ps =0.14 to 50% if ps =0.28.
Given the uncertainty surrounding asymptomatic transmission,
the likelihood of successful suppression is greatest if all social
distancing measures are enacted (Fig. 2B).

The time taken for suppression to be achieved (modeled as a
100-fold reduction in infectious individuals) once control mea-
sures are implemented is shown in Fig. 2C. If self-isolation
effectiveness is high (>70% reduction in transmission), then sup-
pression can be achieved in 2 mo regardless of any additional
social distancing measures. There is little additional decrease
in the necessary duration of social distancing unless schools

and workplaces are both closed, in which case suppression can
be achieved within 2 mo at much lower levels of self-isolation
effectiveness (&45%).

If suppression cannot be achieved (due to unfeasibility or lack
of political will to reduce transmission sufficiently), then the
objective of control measures is mitigation. Social distancing by
60+-y-old individuals results in a marked reduction of the final
fraction of this age group that are exposed; however, unless both
schools and workplaces are closed, additional social distancing
measures do not lead to much further reduction (Fig. 3A).

These results are also mirrored in the impacts of social dis-
tancing on the daily cases in 60+-y-old individuals (Fig. 3B).
Unfortunately, the hospital burden remains high for most inter-
vention strategies, unless self-isolation is very effective (& 50%;
Fig. 3D). Taking around 100,000 hospitalized cases to be the
upper limit of hospital capacity, we find that there is a relatively
small range of parameters where mitigation is successful at pre-
venting hospitals being overwhelmed, but the disease is not also
successfully suppressed (Fig. 3D; compare to Fig. 2B). If social
distancing is applied to all age groups, this range is 0 to 14%
self-isolation effectiveness, whereas, if just the 60+-y age group
socially distance, the range is 41 to 54%.

As mentioned previously, if schools and workplaces reopen
simultaneously after 100 d [e.g., due to social distancing “fatigue”
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Fig. 3. Outcomes of disease mitigation attempts, simulated using the age-
structured SEIR model. As in Fig. 2, control measures are implemented when
there are 10,000 cases in the population. (A) The final fraction of 60+-y-old
individuals exposed to COVID-19 for each of the control strategies simu-
lated, assuming that social distancing measures can be maintained at the
same strength indefinitely (“without fatigue”). (B) Size and (C) timing of
the peak in daily new cases among 60+-y-old individuals. (D) Peak hospital
burden, assuming age-specific hospitalization rates (see Materials and Meth-
ods) and a mean hospital stay of 7 d (24). (E–H) Simulation results using the
same control strategies as in A–D, but assuming that, due to fatigue, schools
and workplaces closures last 100 d.

Brett and Rohani PNAS Latest Articles | 3 of 7

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

23
, 2

02
0 



(10)] and the disease has not been successfully suppressed, then
much of the benefit of their closure is lost (Fig. 3 E–H) due to
a resurgent second wave. In this scenario, the principle effect
of school and workplace closures is in delaying the peak, buying
more time for preparations (Fig. 3G).

It has been suggested that children might have reduced sus-
ceptibility to infection with SARS-CoV-2 (25). We repeated our
analysis of suppression and mitigation assuming 50% reduction
in susceptibility of individuals under 20 y old, with transmission
rates among adults increased to ensure the same reproductive
number, R0 =2.3. As might be expected, there is a decreased
impact of school closures; however, this is compensated by the
increased impact of social distancing by over-20-y-olds, result-
ing in little net change in our findings if both work and school
closures occur (SI Appendix, Figs. S1 and S2).

To summarize, aiming to build herd immunity to SARS-
CoV-2 in a population while mitigating the burden on hospitals
requires initially reducing the reproductive number to ensure
available hospital capacity is not exceeded (Fig. 4A). If social dis-
tancing is maintained at a fixed level, hospital capacity needs to
be much larger than presently available to achieve herd immunity
without exceeding capacity; otherwise, the final outbreak size
will be insufficient to achieve herd immunity (Fig. 4B). Relax-
ing social distancing measures linearly is also insufficient (SI
Appendix, Fig. S3).

Instead, achieving herd immunity without exceeding hospital
capacity requires that social distancing is implemented nonlin-

A

B

Fig. 4. Summary of prospects for achieving herd immunity. (A) The peak
hospital burden (shown on a log scale) is highly sensitive to the reproductive
number. There is a narrow window of reproductive number values (shaded)
where either 1) the number of COVID-19 cases requiring hospitalization
does not overwhelm hospital capacity (modeled at the average hospital
burden for April, 17,800 beds) or 2) circulation is suppressed. This window
depends subtly on the exact age-specific social distancing configuration;
however, all strategies studied fall between the two curves shown. (B) None
of the simulated control scenarios shown in Figs. 2 and 3 achieved herd
immunity while also keeping cases below hospital capacity. For the parame-
ters considered, a hospital capacity in excess of 300,000 is required for this to
be possible—almost 3 times the total UK NHS hospital beds (around 125,000
beds; see Materials and Methods), and around 15 times the average hospital
burden of April.

early. An idealized optimal strategy for achieving social distanc-
ing, calculated using a two-age group (<60 y old and ≥60 y
old) SEIR model, is shown in Fig. 5 A and B. We assumed that
individuals ≥60 y old were able to perfectly self-isolate, while
herd immunity is built up in the <60-y age group. The epidemic
in <60-y-old individuals is initially allowed to grow unimpeded
until the hospital burden caused by the number of sick individu-
als reaches the hospital capacity. At this point, social distancing
among those younger than 60 y commences (Fig. 5B), at a level
that ensures the epidemic growth stalls (i.e., Reff =1). To achieve
herd immunity in minimal time, the rate of new infections
must then remain at the maximum afforded by the healthcare
capacity. This requires reducing social distancing (i.e., increasing
contacts) at the exact rate to balance out reductions in trans-
mission stemming from the decreasing susceptible population
(Fig. 5B)—too quickly and the epidemic grows above hospital
capacity; too slowly and the epidemic with die out without reach-
ing herd immunity. Over time, social distancing in <60-y-olds
drops to zero, after which there are no longer enough suscep-
tible <60-y-old individuals for the epidemic to be sustained.
New infections continue but decline in frequency (meanwhile,
further decreasing the effective reproductive number), before
reaching zero.

While, at this point, the effective reproductive number is below
1 without any social distancing in the <60-y age group, full
herd immunity has not necessarily been achieved (Fig. 5C). If
≥60-year-olds cease self-isolating, then the increased contact
rates cause the effective reproductive number to increase, and
may take it above 1. Achieving herd immunity requires that,
while ≥60-y-olds are isolated, the additional new infections after
Reff < 1 sufficiently further reduce Reff (the “overshoot”) such
that, when ≥ 60-y-olds cease self-isolation, it remains below 1.
The amount of overshoot increases with the hospital capacity
(Fig. 5C). In addition to increasing the prospects of achieving
herd immunity (and also its robustness; see also SI Appendix,
Fig. S3C), the necessary duration of social distancing is inversely
proportional to hospital capacity (Fig. 5D).

Our modeling required estimates for the case hospitalization
probability (22) and mean hospitalization stay (24). We explored
sensitivity of the duration of social distancing to these two param-
eters, and also performed a comparison with a rough calculation
of the duration based on estimates of seroprevalance at the end
of April (26) (SI Appendix, Fig. S4). Our estimated necessary
social distancing duration of 12 mo is close to the estimate from
serology of 7 mo to 11 mo, especially considering the uncertainty
in the case hospitalization probability (22).

Throughout our analysis, we used R0 =2.3, broadly in line
with most early estimates; however, some estimates were higher.
We repeated our analysis using R0 =5.7 (27), finding that, as
might be expected, the range of intervention parameters that
led to successful suppression was reduced (SI Appendix, Fig. S5).
However, our main finding was reinforced: Higher values of
R0 narrow the window for successful mitigation (SI Appendix,
Fig. S6).

Discussion
Various governments have entertained the idea of achieving
herd immunity through natural infection as a means of ending
the long-term threat of COVID-19. This has provoked alarm
in sections of the public health community (16, 28). Our work
confirms that this alarm is well founded.

Attempting to achieve herd immunity while simultaneously
mitigating the impact of COVID-19 on hospital burden is an
extremely challenging task. In order to ensure the hospital bur-
den does not exceed levels comparable with that of the United
Kingdom in April 2020, R0 needs to be reduced from its initial
value (assumed to be R0 =2.3) to about 1.2. Suppression is pos-
sible if R0 is reduced below 1. Due to the fine margins (in terms
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Fig. 5. Proof-of-principle strategy for achieving herd immunity. This strategy 1) achieves herd immunity with minimal social distancing duration 2) without
exceeding hospital capacity, and 3) prevents infection among the most vulnerable. We simulated a reduced two-age group (< 60 y old and≥ 60 y old) model,
assuming that all≥ 60-y-old individuals completely isolate. (A) To achieve herd immunity in the minimum time requires control measures that fix the rate of
new hospitalized cases to ensure hospital beds are at the maximum acceptable capacity until herd immunity is achieved (results showing taking capacity to
be 1× and 2× the average hospital burden of April). (B) The reduction in contacts (via the product of self-isolation and social distancing) among< 60-y-olds
needs to vary nonlinearly. Until the hospital burden hits the hospital capacity, there is no social distancing; subsequently, it is tuned to ensure Reff = 1; that is,
the epidemic neither grows nor shrinks. Contact rates have to then gradually increase to exactly balance the reduction in Reff due to susceptible depletion.
Eventually, there are no longer enough < 60-y-old susceptible individuals to sustain the epidemic, and Reff < 1. (C) While this strategy ensures that the final
reproductive number drops below 1 if individuals ≥ 60 y old remain in isolation, if they return to pre-COVID-19 contact rates, then whether the reduction
in susceptibles is sufficient to achieve herd immunity depends on the hospital capacity. The greater the proportion of the population that needs protecting,
the greater the hospital capacity needed to achieve herd immunity. (D) The duration of social distancing also depends on the available hospital capacity. For
the parameters considered, if hospital capacity is less than around 20,000, then it is not possible to achieve herd immunity without individuals aged ≥ 60 y
remaining socially distanced.

of control effectiveness) between successful disease suppression
and overwhelming hospitals, making herd immunity the primary
objective (rather than applying maximal social distancing and
aiming for suppression) is not supported by our modeling. Put
another way, mitigation (via “flattening the curve”) is not a
practical objective: If mitigation efforts are sufficient to prevent
hospitals from being overwhelmed, only a comparatively small
further increase in control measures will drive R0 below 1, and
make suppression possible.

If herd immunity is the objective, then, in addition to the
narrow range of R0 that must be aimed for, social distancing
measures must be subsequently relaxed gradually in a highly
controlled manner over a period of months to years. We were
able to find a mathematical solution for building herd immu-
nity with the minimal duration of social distancing using a
reduced two-age group model. This solution requires knowl-
edge of unobserved epidemiological determinants, namely, the
remaining susceptible population, fraction exposed, and hos-
pitalization probability. Additionally, complexities neglected by
the model (e.g., failure of the ≥60-y age group to completely
isolate, spatial structure) will alter the exact social distancing
function. We, instead, view our results as serving as an indi-
cator of the general shape and duration of social distancing
necessary. Developing methods for implementable social dis-
tancing strategies capable of building toward herd immunity and
that rely only on observable epidemiological data (e.g., the inci-
dence curve and the hospital bed occupancy) requires further
research.

The estimates of hospitalization probability and fatalities
were calculated using results from a study of cases in Wuhan,
China (22). For this study, we took the point estimates; how-
ever, these had uncertainties associated with them and are
unlikely to be the same across regions. Furthermore, as treat-
ment of COVID-19 continues to improve, fatality rates will
fall. While there is an obvious feedback between fatality rates
and healthcare system burden, the extent to which the Wuhan
healthcare system (used in estimation) was overwhelmed is

unclear. We therefore assumed the fatality rates fixed regard-
less of hospital burden. For these reasons, we have avoided
attaching confidence intervals to estimates of fatalities, and
they should be interpreted as plausible projections and not
predictions.

A major unknown remains the nature, duration, and effective-
ness of natural immunity. Here, we made the pragmatic assump-
tion that, over the time scales under consideration, infection
confers perfect long-lasting immunity (the best-case scenario for
mitigation strategies). If immunity is not perfect, and there is
a moderate to high chance of reinfection, then prospects for
achieving herd immunity via natural infection are slim (29). To
shed light on the kinetics of immunity, mass longitudinal anti-
body testing is necessary. This would both permit the identifica-
tion of previously infected individuals, and provide information
regarding immunity through time (30). We submit that models
such as the one explored here, when integrated into statistical
inference algorithms (31), provide a powerful means of inte-
grating parallel serological and epidemiological data streams to
quantify population-level immunity. Further, such models can be
central to the development of efficient age-stratified serological
testing schemes.

Finally, we stress that our study only explored the epidemi-
ological impacts of nonpharmaceutical interventions (social dis-
tancing and self-isolation). Ultimately, any comprehensive public
health policy needs to take into account the concomitant and
wide-ranging societal and economic consequences of control
measures.

Materials and Methods
Model. We used a deterministic age-structured SEIR transmission model to
simulate COVID-19 transmission in the United Kingdom. Contact rates ci,j ,
the number of daily contacts an individual of age i y makes with individuals
of age j y, were taken from the POLYMOD study of social mixing patterns for
the United Kingdom (32) corrected for reciprocity (33). The simulated age
groups were matched to those of the POLYMOD study: 14 5-y increments
from 0 y to 69 y and then 70+ y. Age-stratified population sizes (Nj) were
taken from 2018 UK demographic data.
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The mean latent and infectious periods were set to 1/ρ= 3 and 1/γ=

3 d, respectively, consistent with various estimates of the serial interval (34,
35) and incubation period (4, 36, 37), assuming infectiousness starts 1 d to
2 d before symptoms develop.

Both latent and infectious periods were assumed to be gamma dis-
tributed and modeled using the method of stages (11, 38, 39), by dividing
the exposed (Ei) and infectious (Ii) compartments for each age group into
four subcompartments, Ei =

∑4
k=1 E(k)

i and Ii =
∑4

k=1 I(k)
i , where the super-

script labels the subcompartment. The transmission dynamics for the age
groups were governed by a system of ordinary differential equations,

dSi

dt
=−λi(t)Si , [1]

dE1
i

dt
=λi(t)Si − 4ρE(1)

i , [2]

dEk
i

dt
= 4ρE(k−1)

i − 4ρE(k)
i for k = 2, 3, 4, [3]

dI1i
dt

= 4ρE(4)
i − 4γI(1)

i , [4]

dIki
dt

= 4γI(k−1)
i − 4γI(k)

i for k = 2, 3, 4, [5]

λi(t) = β
∑

j

ci,j(t)
Ij(t)

Nj
. [6]

The transmission rate β was tuned using the next-generation matrix (40)
to give a value of R0 = 2.3, consistent with estimates (34, 35). Simulations
were initialized with one initial introduction in a fully susceptible popula-
tion (Si = Ni). The resulting doubling time was observed to be about 3 d,
broadly consistent with early observations from the United Kingdom.

Modeling Nonpharmaceutical Interventions. Two types of nonpharmaceuti-
cal intervention were modeled: 1) self-isolation by symptomatic infectious
individuals and 2) mass social distancing by differing age groups (Fig. 6). The
effectiveness of self-isolation of symptomatic individuals is dependent on
the product of two factors: 1) the proportion of infections that occur due to
symptomatic individuals (excluding both presymptomatic and asymptomatic
transmission), ps, and 2) the observance rate of social isolation among symp-
tomatic individuals, k. The fractional reduction of contacts between age
groups i and j due to social distancing is given by qi,j .

Both of these interventions take the form of modifications to the contact
matrix between infectious and susceptible individuals,

c̃i,j = (1− kps)(1− qi,j)ci,j. [7]

This expression for c̃i,j is inserted in place of ci,j in Eq. 6.
Age groups in the model are divided into whether they are young (Y ;

corresponding to 0- to 24-y-olds and age groups i = 1 to 4), adults (A; 25-
to 59-y-olds, age groups i = 5 to 11) and older (O; 60+-y-olds, age groups
i = 12 to 15). The reduction in contacts due to social distancing, qi,j , is then
determined by which of these three categories the contacter and contactee
fall into, given by the block matrix

q =

qYY qYA qYO

qYA qAA qAO

qYO qAO qOO

. [8]

We assume school closures reduce contact rates between young individuals
by a factor of qYY = 0.7 and between young people and adults by qYA = 0.2.
Social distancing among adults (e.g., due to workplace closures and reduc-
tion in social events) was modeled as a reduction of qAA = 0.5. Social
distancing of older individuals was represented by qYO = 0.9, qAO = 0.7, and
qOO = 0.5. For simulations with social distancing fatigue, qYY , qYA, and qAA

were modeled as linearly decreasing from these initial values to 0 over the
periods indicated in SI Appendix, Fig. S3.

Estimating Hospital Burden and Case Fatalities. Age-specific hospitalization
probabilities, hi , and fatality rates were taken from point estimates cal-
culated in a study of cases in Wuhan, China (22). Due to differences in
the final age group of our model (70+ y) and those of the Wuhan study
(70- to 79-y-olds and 80+-y-olds), the hospitalization and fatality rates for
70+-y-old individuals were calculated by summing the estimated 70- to 79-
y-old and 80+-y-old rates weighted by their relative UK population sizes.
Based on data from the United Kingdom, we assumed the average duration
of hospitalization with COVID-19, d, was 7 d (24).

A

B

Fig. 6. Modeling the impact of nonpharmaceutical interventions on disease
transmission. (A) Different social distancing measures (e.g., school closures,
work and social place closures, and older individuals distancing) reduce con-
tact rates between individuals in different ways. To reduce the complexity
of the model, and to understand their differential impacts, we assume that
individuals are only affected by one of these measures, dependent on their
age. Individuals aged 0 y to 24 y are affected by school closures (included
in this are university closures). School closures were assumed to result in
a 70% reduction in contacts among school-aged individuals (qYY ) and 20%
reduction in their contacts with individuals aged 25 y to 59 y (qYA). Work and
social place closures were assumed to reduce contacts among adults (qAA) by
50%. Finally, older individuals distancing reduced contacts by 60+-y-old indi-
viduals with 0- to 24-y-olds by 90% (qYO), with 25- to 59-y-olds by 70% (qAO),
and among one another by 50% (qOO). The effectiveness of symptomatic
individuals self-isolating is dependent on two factors: 1) the observance by
symptomatic individuals, k, and 2) the proportion of transmission due to
individuals who are symptomatic, ps. (B) We modeled five distinct combina-
tions of social distancing measures, assuming that older individuals’ social
distancing will always be prioritized.

Pre–COVID-19 hospital beds and occupancy rates in the UK National
Health Systems (NHS) were taken from the most recent (autumn 2019)
published numbers for Northern Ireland, Wales, Scotland, and England.

Hospital burden was calculated as H = d
∑

i hiΛiSi . Although there is
a lag between exposure and hospitalization, this has no bearing on our
mathematical results.

Optimal Strategy to Achieve Herd Immunity. We used a two-age group
model (<60-y-olds and ≥60-y-olds) to demonstrate an optimal social
distancing strategy while shielding ≥60-y-old individuals. To preserve
the data-informed contact structure, we made the approximation that
the age-specific incidence was constant for age groups <60 y and
similarly for ≥60 y. The two-age group contact matrix is then given
by a weighted sum of the POLYMOD-derived contact matrix, c(2)

a,b =∑
i∈a

∑
j∈b(Ni/Nb)ci,j , where a and b index age groups {< 60, ≥ 60}. Aside

from the contact matrix, the model is identical in structure to that given
in Eqs. 1–6.

If ≥60-y-old individuals are shielded (contact rates reduced to zero), the
<60-y-old susceptible population is depleted at the fastest rate if the epi-
demic is allowed to grow unimpeded until the hospital burden (as defined
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above) reaches the hospital capacity, Hc. At this point, contact rates are
reduced to maintain hospital burden at hospital capacity. Mathematically,
this translates into setting the reduction in contacts, q(t), such that Eqs. 2–5
all equal 0. Solving for q(t) gives

q(t) =

{
1− 1/Ru

eff(t) if H≥Hc and Ru
eff(t)> 1,

0 otherwise.
[9]

where Ru
eff(t) = γN0/(βc(2)

0,0S0(t)) is the effective reproductive number with-
out contact reduction by <60-y-olds. Substituting Eq. 9 into Eq. 1 and
solving gives an expression for the control duration, td . For the parameters

considered, there is limited susceptible depletion prior to hospital capacity
being reached, and so

td ≈
dh0N0

Hc

(
1−

γ

βc(2)
0,0

)
. [10]

Data Availability. Source code data have been deposited in Zenodo
(10.5281/zenodo.400093) (41).
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