Telehealth Eye and Associated Medical Services network - TEAMSnet – The MARVIN Project: Scale, Usability and Evolution





DR blindness is preventable by adhering to accepted standards of care and established best practices

- Identify all patients with DM
- Control confounding factors and co-morbidities
- Diagnose level of DR yearly
- Apply timely treatment

## **Background: Nepal Scenario**

- Traditional fundus cameras are difficult to use at expected scale in these types of environments for delivering best practice care and management.
- Impact of technology failures: One of their two cameras has been down since December, with no real plan for getting it back online.
- Impact of environment using traditional retinal imaging devices:
  - 1. Hard to transport.
  - 2. Fragile.
  - 3. Difficult to use.
  - 4. Variable image quality.
  - 5. Hard to maintain.

The case for a MARVIN type of system solution really compelling given these types of logistical barriers and issues

#### **Positive Tele-Ophthalmology Impact**

- Indian Health Service Studies: Teleophthalmology increased access to eye care, saved sight and cost less than traditional ophthalmology services (Over 100,000 patients)
- Assessed relationship of participation in a diabetes teleheath eye care program with diabetes-related care sequelae (historical data, prospective study design, 14,000 patients)
  - Telehealth eye care significantly predicted whether subjects:
    - Had a subsequent clinic encounter
    - Obtained subsequent standard eye care
    - Improved HbA1c and LDL-C levels
- Telehealth eye care programs that combine evaluation, education, and care planning are related to use of recommended care and improvements in diabetes-related health outcomes

**The Relationship of a Diabetes Telehealth Eye Care Program to Other Diabetes Care and Change in Health Outcomes.** S. Fonda, S Bursell et al. Telemedicine and eHealth, 2007

# **Services and Resources**









None

Mild - Moderate

Moderate – Severe Neovascularization

Wellness and Prevention Interventions Telehealth and mHealth solutions Specialty Interventions. Laser , Steroid and antiVEGF Therapies



# What is Needed: A Massively Scalable Retinal Imaging Solution

- Low cost camera- <\$1K with scalable fabrication and distribution</li>
- Small foot print, light weight, portable
- Multi-field capable or single wide field
- Automated
- Improved non-mydriatic performance (2.5 mm pupil diameter) with consistently good image quality
- Interoperability with EHR systems
- Automated lesion detection and diagnosis of level of DR
- Quality Assurance
- Linkage with Chronic Disease Management

# Strategy

- Disperse medical intervention to where the patient is
- On-the-spot assessment and decision support
- Low cost, high usability, mobile
- Quality assurance, uniform images, integration
- Leverage billions invested in smartphone technology



# **A Mobile Platform**

Android or iOS-based tablet provides user interface coupled with a specialized retinal imaging front end comprised of novel optics, light sources and General-Purpose computing on Graphics Processor Units (GPGPU) onboard compute power for image display and diagnostic evaluation of DR through an open platform public API



Novel Optics: Plenoptics Technology Allows focus via software after taking picture; infinite depth of field.



#### **Technology for lenses already in use in mobile phones**

#### Achieving a wide Field of View (Plenoptics)



## **MARVIN CONCEPT**



- Distant collection/eye geometry forces an effective magnification of ~10cm/25mm at data collection plane: Mag ~ 4.
- Image points of the retina at the image plane can be spaced at a mag = 1 with F/2 optics (Ratio of F/2 over F/8 is the optical mag)
- F/2 optics with 8 micron pixels has a depth of focus ~ 16 microns
- Depth of Field (at the retina) is then ~ 16 microns.



Ray tracing of regular lens shows a zone of sharp focus at 50 mm (left figure). Wavefront coded optics (right figure) show ray density that is uniformly defocussed over a wide range. Sharp images are reconstructed in software.



Stacked microcamera array with schematic view of lenses, microlens arrays, wavefront encoding filter and light-sensing array

## **Aware Multi Aperture Camera**



## Marvin Wavefront Coding Technology



Comparison between traditional imaging of a fingerprint on left and that obtained using wavefront coding of same fingerprint on right





3-D printing of complex parts can take place within a matter of hours.

## **Remote Monitoring and Mobile Health**

CDMP Application accepts data from mobile remote monitoring devices and provides a platform for aggregation and display of data from multiple devices and applications



## MARVIN daily adherence and tracking app



#### MARVIN SERVICE TRACKING CONCEPT







#### **Program Partners**

Ascentia Imaging, computational imaging and optics AQT Imaging, computational imaging and optics Distant Focus, optics, miniature electromechanical systems

EM Photonics, image processing, real-time system control

**Estenda Solutions**, CDMP and user experience

Eyenuk, image processing and automated retinal lesion identification

**Photon Engineering**, illumination

SRI Sarnoff, project management

**BDO**, business assurance

McCarter & English, intellectual property

Wilson Sonsini Goodrich Rosati, corporate counsel

## Summary

- MARVIN prevents blindness by accessing people into appropriate eye care at massive scale, before they progress to ore expensive tertiary care
- MARVIN delivers a complete solution, from GIS-based needs assessment models, to in-the-field diagnosis and patient adherence support, as well as public-health-management informatics.
- MARVIN takes advantage of demographics (services and where the people are). Natural integration with existing social networks of schools, village healthcare workers, etc.
- MARVIN as a retinal imaging devices is designed to adopt to appropriate field conditions (fits in a backpack, solar powered, locally-replaceable components).
- Massive numbers of retinal studies are accumulated worldwide; they become the basis for improved efficiency, new diagnostic abilities and optimal resource allocation.
- Development capital is required, but this cost is very small given the economic impact of the larger problem.

