Skip to content

Good vision is a powerful tool to improve educational outcomes, life opportunities, social participation and future economic productivity (Burton et al., 2021).

Therefore, access to quality eye care is particularly important for school-aged children and is a significant public health issue, especially in low- and middle-income countries where access to comprehensive eye care services may be limited.

School-based eye health programmes can be cost-effective and efficient interventions in many settings by allowing detection, diagnosis and treatment of conditions affecting children’s eyes, mostly uncorrected refractive errors (Burton et al., 2021).

The purpose of these guidelines is to provide direction to those planning and implementing eye health initiatives for schools, including policy makers, health care and educational authorities, health planners, organizations that provide eye care and other professionals involved in addressing the health needs of children.

In situations where resources for eye health are limited, decisions need to be made to ensure that programmes not only address public health problems but are also implemented in a way that is effective, efficient and, wherever possible, sustainable. Systems for monitoring and plans for evaluation should also be developed at the outset.

These guidelines represent minimum clinical guidelines for school eye health, with a focus on low- and middle-income countries. Where they exist, in-country formal and legal guidelines or protocols for school health or eye health should be considered and integrated.

A circular diagram illustrating the planning cycle for a school eye health program. The cycle includes establishing needs, planning, implementing, and monitoring & evaluation. Each stage includes sub-steps such as situation analysis, local needs assessment, gap analysis, operational planning, resources needed, M&E plan, formal partnership, pilot, scalability, and impact evaluation.

Introduction

  1. Burton MJ, Ramke J, Marques AP, et al. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. Lancet Glob Health. Apr 2021;9(4):e489-e551. doi:10.1016/S2214-109X(20)30488-5
  2. Internationl Agency for Prevention of Blindness. International Agency for Prevention of Blindness. May 7th 2023, 2023. https://www.iapb.org
  3. Minto H, Ho SM. What is comprehensive school eye health? Community Eye Health. 2017;30(98):21-25.
  4. Chan VF, Yard E, Mashayo E, et al. Does an integrated school eye health delivery model perform better than a vertical model in a real-world setting? A non-randomised interventional comparative implementation study in Zanzibar. The British journal of ophthalmology. 2022;(azk, 0421041)doi:https://dx.doi.org/10.1136/bjo-2022-321752
  5. Harvey AA, Morjaria P, Tousignant B. Priorities in school eye health in low and middle-income countries a scoping review. Eye (Lond). Apr 2 2024;doi:10.1038/s41433-024-03032-1
  6. Burnett AM, Yashadhana A, Lee L, Serova N, Brain D, Naidoo K. Interventions to improve school-based eye-care services in low- and middle-income countries: a systematic review. Bull World Health Organ. Oct 1 2018;96(10):682-694D. doi:10.2471/BLT.18.212332
  7. World Health Organization. Report on Vision. 2019. Accessed Consulté 3 mai 2023.
  8. Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. May 2016;123(5):1036-1042. doi:10.1016/j.ophtha.2016.01.006
  9. Zhang JH, Ramke J, Jan C, et al. Advancing the Sustainable Development Goals through improving eye health: a scoping review. Lancet Planet Health. Mar 2022;6(3):E270-E280. doi:10.1016/S2542-5196(21)00351-X
  10. Chan VF, Omar F, Yard E, et al. Is an integrated model of school eye health delivery more cost-effective than a vertical model? An implementation research in Zanzibar. BMJ open ophthalmology. 2021;6(1):e000561. doi:https://dx.doi.org/10.1136/bmjophth-2020-000561

Health promotion

  1. Morjaria P, McCormick I, Gilbert C. Compliance and Predictors of Spectacle Wear in Schoolchildren and Reasons for Non-Wear: A Review of the Literature. Ophthalmic Epidemiology. Nov 2 2019;26(6):367-377. doi:10.1080/09286586.2019.1628282
  2. Paudel P, Yen PT, Kovai V, et al. Effect of school eye health promotion on children’s eye health literacy in Vietnam. Health promotion international. 2019;34(1):113-122. doi:https://dx.doi.org/10.1093/heapro/dax065
  3. Narayanan A, Ramani KK. Effectiveness of interventions in improving compliance to spectacle wear and referral in school vision screening. Clinical & experimental optometry. 2018;101(6):752-757. doi:https://dx.doi.org/10.1111/cxo.12797
  4. Narayanan A, Kumar S, Ramani KK. Spectacle compliance among adolescents in Southern India: Perspectives of service providers. Indian journal of ophthalmology. 2018;66(7):945-949. doi:https://dx.doi.org/10.4103/ijo.IJO_27_18

Eye conditions

  1. Mavi S, Chan VF, Virgili G, et al. The Impact of Hyperopia on Academic Performance Among Children: A Systematic Review. Asia Pac J Ophthalmol (Phila). Jan 20 2022;11(1):36-51. doi:10.1097/APO.0000000000000492
  2. Hopkins S, Narayanasamy S, Vincent SJ, Sampson GP, Wood JM. Do reduced visual acuity and refractive error affect classroom performance? Clin Exp Optom. May 2020;103(3):278-289. doi:10.1111/cxo.12953
  3. Kulp MT, Ciner E, Ying GS, et al. Vision Screening, Vision Disorders, and Impacts of Hyperopia in Young Children: Outcomes of the Vision in Preschoolers (VIP) and Vision in Preschoolers – Hyperopia in Preschoolers (VIP-HIP) Studies. Asia-Pac J Ophthalmo. Jan-Feb 2022;11(1):52-58. doi:10.1097/Apo.0000000000000483
  4. International Myopia Institute. Internation Myopia Institute (IMI) Facts and Findings: 2023. https://myopiainstitute.org/myopia-infographics/
  5. Grzybowski A, Kanclerz P, Tsubota K, Lanca C, Saw SM. A review on the epidemiology of myopia in school children worldwide. Bmc Ophthalmology. Jan 14 2020;20(1)doi:ARTN 27 10.1186/s12886-019-1220-0
  6. Tariq F, Mobeen R, Wang XH, et al. Advances in myopia prevention strategies for school-aged children: a comprehensive review. Frontiers in Public Health. Aug 15 2023;11doi:ARTN 1226438 10.3389/fpubh.2023.1226438
  7. Logan NS, Wolffsohn JS. Role of un-correction, under-correction and over-correction of myopia as a strategy for slowing myopic progression. Clinical and Experimental Optometry. Mar 2020;103(2):133-137. doi:10.1111/cxo.12978
  8. He XG, Sankaridurg P, Wang JJ, et al. Time Outdoors in Reducing Myopia. Ophthalmology. Nov 2022;129(11):1245-1254. doi:10.1016/j.ophtha.2022.06.024
  9. Li SM, Ran AR, Kang MT, et al. Effect of Text Messaging Parents of School-Aged Children on Outdoor Time to Control Myopia A Randomized Clinical Trial. Jama Pediatr. Nov 2022;176(11):1077-1083. doi:10.1001/jamapediatrics.2022.3542
  10. Boyd K. Strabismus in Children. Amercian Academy of Ophtalmology. https://www.aao.org/eye-health/diseases/strabismus-in-children
  11. Mostafaie A, Ghojazadeh M, Hosseinifard H, et al. A systematic review of Amblyopia prevalence among the children of the world. Romanian journal of ophtalmology. 2020;64(4):342-355. doi:https://doi.org/10.22336/rjo.2020.56
  12. Xiao O, Morgan IG, Ellwein LB, He MG, Children RES. Prevalence of Amblyopia in School-Aged Children and Variations by Age, Gender, and Ethnicity in a Multi-Country Refractive Error Study. Ophthalmology. Sep 2015;122(9):1924-1931. doi:10.1016/j.ophtha.2015.05.034
  13. AAO PPP Pediatric Ophtalmology/Strabismus Panel. Amblyopia Preferred Practice Patterns. 2022.
  14. Song PG, Adeloye D, Li ST, et al. The prevalence of vitamin A deficiency and its public health significance in children in low- and middle-income countries: A systematic review and modelling analysis. J Glob Health. 2023;13doi:ARTN 04084 10.7189/jogh.13.04084

Guidelines

  1. Yong AC, Buglass A, Mwelwa G, Abdallah I, Chan VF. Can we scale up a comprehensive school-based eye health programme in Zambia? BMC health services research. 2022;22(1):945. doi:https://dx.doi.org/10.1186/s12913-022-08350-2
  2. Yashadhana A, Lee L, Serova N, Nthete E, Burnett AM. Access to school-based eye health programs in Central Region, Malawi: a qualitative case study. Health Promot Int. Apr 1 2023;38(2)doi:10.1093/heapro/daad002
  3. Seelam B, Liu H, Borah RR, Sheeladevi S, Keay L. A realist evaluation of the implementation of a large-scale school eye health programme in India: a qualitative study. Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists). 2021;41(3):565-581. doi:https://dx.doi.org/10.1111/opo.12815
  4. Pan WY, Lou LX, Chen FY, Tang XJ. Gender Disparities in the Global Burden of Refractive Disorders in Children: An Analysis From the Global Burden of Disease Study 2019. J Pediat Ophth Strab. May 24 2023;doi:10.3928/01913913-20230421-02
  5. Sil A, Aggarwal P, Sil S, et al. Design and delivery of the Refractive Errors Among Children (REACH) school-based eye health programme in India. CLINICAL AND EXPERIMENTAL OPTOMETRY. doi:10.1080/08164622.2022.2125793
  6. Kaur G, Koshy J, Thomas S, Kapoor H, Zachariah JG, Bedi S. Vision Screening of School Children by Teachers as a Community Based Strategy to Address the Challenges of Childhood Blindness. Journal of clinical and diagnostic research : JCDR. 2016;10(4):NC09-14. doi:https://dx.doi.org/10.7860/JCDR/2016/18939.7628
  7. Paudel P, Kovai V, Naduvilath T, Phuong HT, Ho SM, Giap NV. Validity of Teacher-Based Vision Screening and Factors Associated with the Accuracy of Vision Screening in Vietnamese Children. Ophthalmic Epidemiology. Jan 2 2016;23(1):63-68. doi:10.3109/09286586.2015.1082602
  8. Tobi P, Ibrahim N, Bedell A, Khan I, Jolley E, Schmidt E. Assessing the prevalence of refractive errors and accuracy of vision screening by schoolteachers in Liberia. International health. 2022;14(Suppl 1):i41-i48. doi:https://dx.doi.org/10.1093/inthealth/ihab085
  9. Dole KS, Deshpande AS, Deshpande MD, Thakur RR. Comparative evaluation of qualitative performance of technical human resource in school eye health program. Indian journal of ophthalmology. 2021;69(1):123-126. doi:https://dx.doi.org/10.4103/ijo.IJO_255_20
  10. Marmamula S, Khanna RC, Mettla AL, et al. Agreement and diagnostic accuracy of vision screening in children by teachers, community eye-health workers and vision technicians. Clinical & experimental optometry. 2018;101(4):553-559. doi:https://dx.doi.org/10.1111/cxo.12559
  11. Mathenge WC, Bello NR, Hess OM, Dangou J-M, Nkurikiye J, Levin AV. Use of the World Health Organization primary eye care protocol to investigate the ocular health status of school children in Rwanda. Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus. 2023;(c99, 9710011)doi:https://dx.doi.org/10.1016/j.jaapos.2022.10.008
  12. Sabherwal S, Reddy PA, Siddiqui Z, et al. Visual Acuity Screening in North Indian Schools: Testing Accuracy and Cost of Alternate Screening Models. Ophthalmic Epidemiology. Mar 8 2023;doi:10.1080/09286586.2023.2187069
  13. Gajiwala UR, Patel RU, Sudhan A, et al. Compliance of spectacle wear among school children. Indian journal of ophthalmology. 2021;69(6):1376-1380. doi:https://dx.doi.org/10.4103/ijo.IJO_1801_20
  14. Asare FA, Morjaria P. Eligibility for the use of ready-made spectacles among children in a school-based programme in Ghana. PLOS Glob Public Health. 2022;2(1):e0000079. doi:10.1371/journal.pgph.0000079
  15. Morjaria P, Evans J, Murali K, Gilbert C. Spectacle Wear Among Children in a School-Based Program for Ready-Made vs Custom-Made Spectacles in India: A Randomized Clinical Trial. JAMA ophthalmology. 2017;135(6):527-533. doi:https://dx.doi.org/10.1001/jamaophthalmol.2017.0641
  16. Morjaria P. Use of ready-made spectacles in school eye health programmes. Community Eye Health. 2017;30(98):33.

Technology

  1. Arnon R, Rozen-Knisbacher I, Yahalomi T, et al. Rise of the Machines? Comparison of Cycloplegic Refraction Using Retinoscopy and the Retinomax K-Plus 5 in Children. J Pediatr Ophthalmol Strabismus. Nov-Dec 2022;59(6):380-387. doi:10.3928/01913913-20220211-01
  2. Wilson S, Ctori I, Shah R, Suttle C, Conway ML. Systematic review and meta-analysis on the agreement of non-cycloplegic and cycloplegic refraction in children. Ophthal Physl Opt. Nov 2022;42(6):1276-1288. doi:10.1111/opo.13022
  3. Rono HK, Bastawrous A, Macleod D, et al. Smartphone-based screening for visual impairment in Kenyan school children: a cluster randomised controlled trial. The Lancet Global health. 2018;6(8):e924-e932. doi:https://dx.doi.org/10.1016/S2214-109X(18)30244-4
  4. Morjaria P, Bastawrous A, Murthy GVS, et al. Effectiveness of a novel mobile health (Peek) and education intervention on spectacle wear amongst children in India: Results from a randomized superiority trial in India. EClinicalMedicine. 2020;28(101733727):100594. doi:https://dx.doi.org/10.1016/j.eclinm.2020.100594
  5. Morjaria P, Massie J, Bastawrous A, Grp SA. A School Eye Health Rapid Assessment (SEHRA) planning tool: Module to survey the magnitude and nature of local needs. Bmc Public Health. Sep 2 2022;22(1)doi:ARTN 1665 10.1186/s12889-022-13927-x

 

  1. Tousignant B, Garceau MC, Bouffard-Saint-Pierre N, Bellemare MM, Hanssens JM. Comparing the Netra smartphone refractor to subjective refraction. Clinical and Experimental Optometry. Jul 2020;103(4):501-506. doi:10.1111/cxo.13003
  2. Reddy S, Panda L, Kumar A, Nayak S, Das T. Tribal Odisha Eye Disease Study # 4: Accuracy and utility of photorefraction for refractive error correction in tribal Odisha (India) school screening. Indian journal of ophthalmology. 2018;66(7):929-933. doi:https://dx.doi.org/10.4103/ijo.IJO_74_18
  3. Barugel R, Touhami S, Samama S, et al. Evaluation of the Spot Vision Screener for children with limited access to ocular health care. Journal of Aapos. Jun 2019;23(3):153-155. doi:10.1016/j.jaapos.2018.09.012
  4. Peterseim MMW, Trivedi RH, Monahan SR, et al. Effectiveness of the Spot Vision Screener using updated 2021 AAPOS guidelines. Journal of Aapos. Feb 2023;27(1)doi:10.1016/j.jaapos.2022.11.019
  5. Murali K, Vidhya C, Murthy SR, Mallapa S. Cost-Effectiveness of photoscreeners in screening at-risk amblyopia in Indian children. Indian journal of public health. 2022;66(2):171-175. doi:https://dx.doi.org/10.4103/ijph.ijph_1848_21
  6. Arnold SL, Arnold AW, Sprano JH, Arnold RW. Performance of the 2WIN Photoscreener With “CR” Strabismus Estimation in High-Risk Patients. Am J Ophthalmol. Nov 2019;207:195-203. doi:10.1016/j.ajo.2019.04.016
  7. Liu ZM, Pazo EE, Ye H, Yu C, Xu L, He W. Comparing School-Aged Refraction Measurements Using the 2WIN-S Portable Refractor in Relation to Cycloplegic Retinoscopy: A Cross-Sectional Study. Journal of Ophthalmology. May 21 2021;2021doi:Artn 6612476 10.1155/2021/6612476
  8. Racano E, Di Stefano G, Alessi S, Pertile R, Romanelli F. Validation of the 2WIN Corneal Reflexes App in children. Graef Arch Clin Exp. Jun 2021;259(6):1635-1642. doi:10.1007/s00417-020-05066-z
  9. Gil A, Hernández CS, Pérez-Merino P, et al. Assesment of the QuickSee wavefront autorefractor for characterizing refractive errors in school-age children. Plos One. Oct 28 2020;15(10)doi:ARTN e0240933 10.1371/journal.pone.0240933
  10. Hernandez CS, Gil A, Zaytouny A, et al. Ametropia detection using a novel, compact wavefront autorefractor. Ophthal Physl Opt. Mar 2024;44(2):311-320. doi:10.1111/opo.13263
  11. Lage E, Armandon F, Makori E, et al. Screening for refractive error in Kenya Schools with the QuickSee Handheld Autorefractor. Invest Ophth Vis Sci. Jun 2020;61(7)
  12. Samanta A, Shetty A, Nelson PC. Better one or two? A systematic review of portable automated refractors. J Telemed Telecare. Jul 2022;28(6):404-411. doi:Artn 1357633×20940140 10.1177/1357633×20940140
  13. Blundell R, Roberts D, Fioratou E, et al. Comparative evaluation of a novel solar powered low-cost ophthalmoscope (Arclight) by eye healthcare workers in Malawi. BMJ Innov. Apr 2018;4(2):98-102. doi:10.1136/bmjinnov-2017-000225
  14. Lowe J, Cleland CR, Mgaya E, et al. The Arclight Ophthalmoscope: A Reliable Low-Cost Alternative to the Standard Direct Ophthalmoscope. Journal of Ophthalmology. 2015;2015doi:Artn 743263 10.1155/2015/743263
  15. Mndeme FG, Mmbaga BT, Kim MJ, et al. Red reflex examination in reproductive and child health clinics for early detection of paediatric cataract and ocular media disorders: cross-sectional diagnostic accuracy and feasibility studies from Kilimanjaro, Tanzania. Eye (Lond). May 2021;35(5):1347-1353. doi:10.1038/s41433-020-1019-5
  16. Tuteja SY, Blaikie A, Kekunnaya R. Identification of amblyogenic risk factors with the Bruckner reflex test using the low-cost Arclight direct ophthalmoscope. Eye (Lond). Nov 2021;35(11):3007-3011. doi:10.1038/s41433-020-01341-9
  17. Bifolck E, Fink A, Pedersen D, Gregory T. Smartphone imaging for the ophthalmic examination in primary care. Jaapa-J Am Acad Phys. Aug 2018;31(8):34-38. doi:10.1097/01.JAA.0000541482.54611.7c
  18. Mamtora S, Sandinha MT, Ajith A, Song A, Steel DHW. Smart phone ophthalmoscopy: a potential replacement for the direct ophthalmoscope. Eye. Nov 2018;32(11):1766-1771. doi:10.1038/s41433-018-0177-1
  19. Wu AR, Fouzdar-Jain S, Suh DW. Comparison Study of Funduscopic Examination Using a Smartphone-Based Digital Ophthalmoscope and the Direct Ophthalmoscope. J Pediat Ophth Strab. May-Jun 2018;55(3):201-206. doi:10.3928/01913913-20180220-01
  20. Srivastava RM, Verma S, Gupta S, Kaur A, Awasthi S, Agrawal S. Reliability of Smart Phone Photographs for School Eye Screening. Children (Basel, Switzerland). 2022;9(10)doi:https://dx.doi.org/10.3390/children9101519
  21. Pujari A. Smartphone Ophthalmoscopy: is there a place for it? Clin Ophthalmol. 2021;15:4333-4337.
  22. Morjaria P, Bastawrous A. Helpful developments and technologies for school eye health programmes. Community Eye Health. 2017;30(98):34-36.